当前位置 : 首页 > 新闻中心
工业废水处理技术

工业废水处理技术

* 作者 : 泰特环保 * 发表时间 : 2013-4-19 12:39:21

 

高效节能的高浓度氨氮废水处理成套技术
1、引言
当前我国工业企业所排出的废水种类众多,废水总量很大,其中仅氨氮废水一项其氨氮年排放量超过30万吨。大量的氨氮排放不仅严重污染环境,而且造成巨大资源浪费。
一般情况下,对于低浓度氨氮废水一般可以采用生化处理,其处理费用较低。但是,对于多数工业企业来说,其氨氮废水中氨氮浓度很高(最高可达几万毫克/升),无法进行生化处理,需要首先对氨氮废水进行脱氨处理。
当前,大部分氨氮废水处理技术是将废水中的氨氮定义为污染物,一般对其采用反应转化方式,即采用去除的方法达到降低废水中氨氮的目的,没有实现氨氮的资源化回收利用。例如:硝化反硝化法、折点加氯法、反应沉淀法等。
我们在研究开发高浓度氨氮处理技术过程中没有简单地将废水中氨氮定义为污染物,而是将其定义为可回收利用的资源。实现氨氮废水中氨氮的资源化回收利用,不仅可以实现污染物的减排,同时可以利用所回收的资源补偿一部分废水处理的费用,降低氨氮废水处理综合成本。
鉴于此指导思想,我们在多年废水脱氨技术研究成果及项目实施实践经验的基础上,结合最新研究开发的节能降耗技术及装备研究成果,以效率高、技术成熟度好的蒸汽汽提脱氨技术为基础,针对传统蒸汽汽提废水脱氨技术中存在的蒸汽耗量大(一般为250~300kg/吨废水),废水处理单耗高的难题,采用创新性工艺流程设计、高效脱氨技术及设备、节能降耗技术及设备等,通过研究攻关,开发了适合于多种工况的氨氮废水处理技术,并付诸工业化应用。现已完成的氨氮废水处理工业化装置已经有十几家,包括外资企业、中石化、国内大型农药企业等。
我们开发的高效节能的高浓度氨氮废水处理成套技术特点如下:
(1)脱氨效率高。本技术可以将氨氮含量在60000mg/L以上的氨氮废水一次性处理至低于15mg/L(满足国家一级排放标准),最低在5mg/L以下。
(2)蒸汽单耗低。本技术氨氮废水处理单耗在30~180kg/吨废水,最低甚至低于30kg/吨废水。
(3)实现了氨氮的资源化回收利用。本技术可以根据要求将废水中的氨氮以浓氨水、浓氨气、液氨或者铵盐的形式回收利用。
(4)实现了技术的成套化、系列化,以及氨氮废水处理装置的模块化、自动化。
2. 高效节能的高浓度氨氮废水处理成套技术简介
2.1汽提精馏脱氨成套技术(BUCT-SRAT)
汽提精馏脱氨成套技术(BUCT-SRAT)是基于传统汽提脱氨技术,结合高效脱氨技术及多项节能技术开发的氨氮废水减排及资源化利用成套技术。
2.1.1 汽提精馏脱氨成套技术(BUCT-SRAT)技术特点
(1)采用蒸汽汽提+精馏复合工艺流程,对氨氮废水进行汽提及精馏得到浓度为10~20%浓氨水、高浓度氨气或液氨。不仅可以实现废水氨氮含量达标排放(<15mg/L),而且实现其中氨氮的资源化回收利用。
(2)在氨氮废水处理系统中采用多项节能技术有效回收系统热量,其蒸汽单耗较传统汽提脱氨技术(一般为250~300kg/吨废水)降低40%左右,一般为150~180 kg/吨废水。
2.1.2 汽提精馏脱氨成套技术(BUCT-SRAT)主要设备
汽提精馏塔、塔釜液储罐、塔顶冷凝器、物料进出口换热器、塔顶回流罐、塔釜液泵、塔顶回流泵等。
2.1.3 汽提精馏脱氨成套技术(BUCT-SRAT)适用工况
废水中氨浓度:>1000mg/L;
废水中氨存在形式:NH4+或者NH3;
废水流量:不限;
处理要求:处理后废水氨氮含量<15mg/L,可以浓氨水、氨气或液氨形式回收废水中氨。
2.1.4 汽提精馏脱氨成套技术(BUCT-SRAT)工程应用举例
工程地点:国内某外资催化剂厂
氨氮废水处理能力:8 m3/h;
处理废水中氨含量约为:12000mg/L;
处理后排放废水中氨氮:5mg/L;
回收产品:浓度15~20%浓氨水。
2.1.5现场装置:
 
汽提精馏脱氨(BUCT-SRAT)成套装置
2.2 双效节能汽提脱氨成套技术(BUCT-DFAT)
双效节能汽提脱氨成套技术(BUCT-DFAT)是基于汽提精馏脱氨成套专利技术,结合最新开发的双效节能技术开发的氨氮废水减排及资源化利用成套技术。
2.2.1 双效节能汽提脱氨成套技术(BUCT-DFAT)技术特点
(1)采用双效汽提+精馏复合工艺流程,对氨氮废水进行汽提及精馏得到浓度为10~20%浓氨水或者高浓度氨气。不仅可以实现废水氨氮含量达标排放(<15mg/L),而且实现其中氨氮的资源化回收利用。
(2)在氨氮废水处理系统中采用双效节能技术有效利用系统热量,使处理氨氮废水蒸汽单耗在汽提精馏脱氨成套技术(BUCT-SRAT)的基础上再降低40%左右,一般为90~110 kg/吨废水。
2.2.2 双效节能汽提脱氨成套技术(BUCT-DFAT)主要设备
一效汽提精馏塔、二效汽提精馏塔、一效塔釜液储罐、二效塔釜液储罐、效间节能器、塔顶冷凝器、物料进出口换热器I、物料进出口换热器II、塔顶回流罐、一效塔釜液泵、二效塔釜液泵、塔顶回流泵等。
2.2.3 双效节能汽提脱氨成套技术(BUCT-DFAT)适用工况
废水中氨浓度:>1000mg/L;
废水中氨存在形式:NH4+或者NH3;
废水流量:10m3/h以上;
处理要求:处理后废水氨氮含量< 5mg/L,可以浓氨水、高浓度氨气形式回收废水中氨。
2.2.4 双效节能汽提脱氨成套技术(BUCT-DFAT)工程应用举例
工程地点:国内某农药厂
氨氮废水处理能力:15m3/h;
处理废水中氨含量约为:25000mg/L;
处理后排放废水中氨氮:10mg/L;
回收产品:浓度15~20%浓氨水。
2.2.5 现场装置:
 
双效节能汽提脱氨(BUCT-DFAT)成套装置
2.3 蒸汽循环汽提脱氨成套技术(BUCT-SCAT)
蒸汽循环汽提脱氨成套技术(BUCT-SCAT)是在以硫酸铵形式回收废水中氨的前提下,基于汽提脱氨技术及硫酸吸收脱氨技术开发的氨氮废水减排及资源化利用成套技术。
2.3.1 蒸汽循环汽提脱氨成套技术(BUCT-SCAT)技术特点
(1)采用汽提脱氨+硫酸吸收脱氨复合工艺流程,对氨氮废水进行汽提,得到浓度为40~50%的硫酸铵溶液或者固体硫酸铵。不仅可以实现废水氨氮含量达标排放(<15mg/L),而且实现其中氨氮的资源化回收利用。
(2)在氨氮废水处理系统中采用蒸汽循环技术有效利用系统热量,使处理氨氮废水蒸汽单耗在汽提精馏脱氨成套技术(BUCT-SRAT)的基础上再降低80%左右,一般为30~40 kg/吨废水。
2.3.2 蒸汽循环汽提脱氨成套技术(BUCT-SCAT)主要设备
汽提脱氨塔、塔釜液储罐、氨气酸洗塔、酸液循环罐、塔釜液泵、物料进出口换热器、酸液循环泵、蒸汽循环机等。
2.3.3 蒸汽循环汽提脱氨成套技术(BUCT-SCAT)适用工况
废水中氨浓度:>1000mg/L;
废水中氨存在形式:NH4+或者NH3;
废水流量:10m3/h以上;
处理要求:处理后废水氨氮含量<15mg/L,可以硫酸铵形式回收废水中氨。
2.3.4 蒸汽循环汽提脱氨成套技术(BUCT-SCAT)工程应用举例
工程地点:中石化某催化剂厂
氨氮废水处理能力:75m3/h;
处理废水中氨含量约为: 7000 mg/L;
处理后排放废水中氨氮:5mg/L;
回收产品:浓度30%硫酸铵。
2.3.5现场装置
 
蒸汽循环汽提脱氨(BUCT-SCAT)成套装置
2.4超重力汽提脱氨成套技术(BUCT-HSAT)
超重力汽提脱氨成套技术(BUCT-HSAT)是基于汽提精馏脱氨成套技术,结合北京化工大学开发的新型过程强化技术——超重力技术开发的氨氮废水减排及资源化利用关键技术,这是一项针对特殊使用工况(如含大量固体悬浮物)开发的废水脱氨技术。
2.4.1 超重力汽提脱氨成套技术(BUCT-HSAT)技术特点
(1)采用汽提+精馏复合工艺流程,对氨氮废水进行汽提及精馏得到浓度为10~20%浓氨水、高浓度氨气或液氨。不仅可以实现废水氨氮含量达标排放(<15mg/L),而且实现其中氨氮的资源化回收利用。
(2)在氨氮废水处理系统中采用新型过程强化设备——超重力设备作为汽提及精馏设备,代替原有的汽提精馏塔,以解决塔设备因废水中固体悬浮物的存在而发生的设备堵塞问题。
2.4.2 超重力汽提脱氨成套技术(BUCT-HSAT)主要设备
超重力汽提脱氨器、超重力精馏器、塔釜液储罐、塔顶冷凝器、闪蒸热量回收器、塔釜液泵等。
2.4.3 超重力汽提脱氨成套技术(BUCT-HSAT)适用工况
废水中氨浓度:>1000mg/L;
废水中氨存在形式:NH4+或者NH3;
废水流量:不限;
废水中固体悬浮物:不限;
处理要求:处理后废水氨氮含量<15mg/L,要求以浓氨水、氨气或液氨形式回收废水中氨。
2.4.4 超重力汽提脱氨成套技术(BUCT-HSAT)工程应用举例
工程地点:中石化某炼油厂
氨氮废水处理能力:5m3/h;
处理废水中氨含量约为:3000 mg/L;
处理后排放废水中氨氮:10mg/L;
回收产品:浓度15~20%浓氨水。
2.4.5 现场装置
 
超重力汽提脱氨(BUCT-HSAT)成套装置
氨氮废水处理技术综述
目前随着化肥、石油化工等行业的迅速发展壮大,由此而产生的高氨氮废水也成为行业发展制约因素之一;据报道,2001年我国海域发生赤潮高达77次,氨氮是污染的重要原因之一,特别是高浓度氨氮废水造成的污染。因此,经济有效的控制高浓度氨氮废水污染也成为当前环保工作者研究的重要课题,得到了业内人士的高度重视。氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。
高氨氮废水如何处理,我们着重介绍一下其处理方法:
一、物化法
1. 吹脱法
在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。
2. 沸石脱氨法
利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。
3.膜分离技术
利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮。氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。
4.MAP沉淀法
主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4
理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。
5.化学氧化法
利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。
二、生物脱氮法
传统和新开发的脱氮工艺有A/O,两段活性污泥法、强氧化好氧生物处理、短程硝化反硝化、超声吹脱处理氨氮法方法等。
1.A/O工艺
将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。其特点是缺氧池在前,污水中的有机碳被反硝化菌所利用,可减轻其后好氧池的有机负荷,反硝化反应产生的碱度可以补偿好氧池中进行硝化反应对碱度的需求。好氧在缺氧池之后,可以使反硝化残留的有机污染物得到进一步去除,提高出水水质。BOD5的去除率较高可达90~95%以上,但脱氮除磷效果稍差,脱氮效率70~80%,除磷只有20~30%。尽管如此,由于A/O工艺比较简单,也有其突出的特点,目前仍是比较普遍采用的工艺。
2.两段活性污泥法
能有效的去除有机物和氨氮,其中第二级处于延时曝气阶段,停留时间在36小时左右,污水浓度在2g/l以下,可以不排泥或少排泥从而降低污泥处理费用。
3.强氧化好氧生物处理其典型代表有粉末活性炭法(PACT工艺)
粉末活性碳法的主要特点是向曝气池中投加粉末活性炭(PAC)利用粉末活性炭极为发达的微孔结构和更大的吸附能力,使溶解氧和营养物质在其表面富集,为吸附在PAC 上的微生物提供良好的生活环境从而提高有机物的降解速率。
近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化等。
4. 短程硝化反硝化
生物硝化反硝化是应用最广泛的脱氮方式,是去除水中氨氮的一种较为经济的方法,其原理就是模拟自然生态环境中氮的循环,利用硝化菌和反硝化菌的联合作用,将水中氨氮转化为氮气以达到脱氮目的。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中由亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节(即将氨氮氧化至亚硝酸盐氮即进行反硝化)。该技术具有很大的优势:①节省25%氧供应量,降低能耗;②减少40%的碳源,在C/N较低的情况下实现反硝化脱氮;③缩短反应历程,节省50%的反硝化池容积;④降低污泥产量,硝化过程可少产污泥33%~35%左右,反硝化阶段少产污泥55%左右。实现短程硝化反硝化生物脱氮技术的关键就是将硝化控制在亚硝酸阶段,阻止亚硝酸盐的进一步氧化。
5. 厌氧氨氧化(ANAMMOX)和全程自养脱氮(CANON)
厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程。
厌氧氨氧化(Anaerobicammoniaoxidation,简称ANAMMOX)是指在厌氧条件下,以Planctomycetalessp为代表的微生物直接以NH4+为电子供体,以NO2-或NO3-为电子受体,将NH4+、NO2-或NO3-转变成N2的生物氧化过程。该过程利用独特的生物机体以硝酸盐作为电子供体把氨氮转化为N2,最大限度的实现了N的循环厌氧硝化,这种耦合的过程对于从厌氧硝化的废水中脱氮具有很好的前景,对于高氨氮低COD的污水由于硝酸盐的部分氧化,大大节省了能源。目前推测厌氧氨氧化有多种途径。其中一种是羟氨和亚硝酸盐生成N2O的反应,而N2O可以进一步转化为氮气,氨被氧化为羟氨。另一种是氨和羟氨反应生成联氨,联氨被转化成氮气并生成4个还原性[H],还原性[H]被传递到亚硝酸还原系统形成羟氨。第三种是:一方面亚硝酸被还原为NO,NO被还原为N2O,N2O再被还原成N2;另一方面,NH4+被氧化为NH2OH,NH2OH经N2H4,N2H2被转化为N2。厌氧氨氧化工艺的优点:可以大幅度地降低硝化反应的充氧能耗;免去反硝化反应的外源电子供体;可节省传统硝化反硝化反应过程中所需的中和试剂;产生的污泥量极少。厌氧氨氧化的不足之处是:到目前为止,厌氧氨氧化的反应机理、参与菌种和各项操作参数不明确。
全程自养脱氮的全过程实在一个反应器中完成,其机理尚不清楚。Hippen等人发现在限制溶解氧(DO浓度为0.8•1.0mg/l)和不加有机碳源的情况下,有超过60%的氨氮转化成N2而得以去除。同时Helmer等通过实验证明在低DO浓度下,细菌以亚硝酸根离子为电子受体,以铵根离子为电子供体,最终产物为氮气。有实验用荧光原位杂交技术监测全程自养脱氮反应器中的微生物,发现在反应器处于稳定阶段时即使在限制曝 气的情况下,反应器中任然存在有活性的厌氧氨氧化菌,不存在硝化菌。有85%的氨氮转化为氮气。鉴于以上理论,全程自养脱氮可能包括两步第一是将部分氨氮氧化为烟硝酸盐,第二是厌氧氨氧化。
6. 好氧反硝化
传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。近年来,好氧反硝化现象不断被发现和报道,逐渐受到人们的关注。一些好氧反硝化菌已经被分离出来,有些可以同时进行好氧反硝化和异养硝化(如Robertson等分离、筛选出的Tpantotropha.LMD82.5)。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。
7.超声吹脱处理氨氮
超声吹脱法去除氨氮是一种新型、高效的高浓度氨氮废水处理技术,它是在传统的吹脱方法的基础上,引入超声波辐射废水处理技术,将超声波和吹脱技术联用而衍生出来的一种处理氨氮的方法。将这两种方法联用不仅改进了超声波处理废水成本较高的问题,也弥补了传统吹脱技术去除氨氮不佳的缺陷,超生吹脱法在保证处理氨氮的效果的同时还能对废水中有机物的降解起到一定的提高作用。技术特点(1)高浓度氨氮废水采用90年代高新技术——超声波脱氮技术,其总脱氮效率在70~90%,不需要投加化学药剂,不需要加温,处理费用低,处理效果稳定。(2)生化处理采用周期性活性污泥法(CASS)工艺,建设费用低,具有独特的生物脱氮功能,处理费用低,处理效果稳定,耐负荷冲击能力强,不产生污泥膨胀现象,脱氮效率大于90%,确保氨氮达标。
8. Bardenpho工艺
该工艺是在A/O工艺基础上,增设了一个缺氧段和好氧段,各段反应池均独立运行,混合液自第一好氧池回流至第一缺氧池而第二好氧池无混合液回流(因而须注意,第二缺氧池和第二好氧池并非组成一级A/O工艺)所增设的缺氧段和好氧段起强化脱氨和提高处理出水水质的作用。运行过程中,第一好氧池的内部回流混合液、原水中的有机基质及回流污泥进入第一厌氧池,进行反硝化脱氮。由于第一厌氧池进水中含有较多内碳源可利用因而具有较高的反硝化速率,但与其进水中的食料比有关。好氧一池的容积一般可按F./M为0.25考虑;在厌氧二池中,由于好氧二池出水中有机物浓度较低,同时也没有外加碳源因而反硝化菌主要通过内源呼吸作用,以细胞内碳源进行反硝化,因此反硝化效率较低,并与系统的污泥龄有关。但这种反硝化作用可有效地提高整个处理系统的反硝化程度,从而利于提高脱氮效率。必要时,可将少部分进水引入厌氧二池以适当补充碳源,提高其反硝化速率。该工艺中好氧二池的主要作用是进一步降低废水中的有机物浓度,同时改善出水的表观性状由于增设了厌氧二池和好氧二池强化处理作用,该工艺的脱氮效率可以高达90%~95%(城市污水)。
9. BABE工艺
在通常的废水生物处理工艺中,其污泥经浓缩的上层液或氧化处理后脱水滤液均需返回至主体工艺进行处理。由于污泥浓缩上层液或脱水滤液中富含氮,因而其向主体工艺的返回将增加主体工艺的处理负荷,从而影响处理出水中氮的指标。BABE在运行过程中将以A/O方式运行的处理工艺主流程中回流污泥的一部分分流入BABE间歇曝气池,BABE 所处理的对象为含有高浓度的TN的污泥浓缩上层液或污泥脱水滤液。通过BABE池的间歇曝气运行,不仅有效地延长了处理工艺的污泥龄,并可对其进液中的氮实现充分的硝化作用,同时由于BABE池的良好消化条件,即较低的有机负荷及良好的温度控制(一般将温度控制在30℃),有效地提高了污泥中硝化菌的数量。BABE池经间歇曝气后富含硝化菌的混合液、内回流与进水一起进入A/O工艺主流程,可实现充分的反硝化脱氮,强化了系统对氮的去处作用。
三、 生化联合法
物化方法在处理高浓度氨氮废水时不会因为氨氮浓度过高而受到限制,但是不能将氨氮浓度降到足够低(如100mg/L以下)。而生物脱氮会因为高浓度游离氨或者亚硝酸盐氮而受到抑制。实际应用中采用生化联合的方法,在生物处理前先对含高浓度氨氮的废水进行物化处理。例如:生物活性炭流化床,膜-生物反应器技术(MBR)等。本处仅介绍膜-生物反应器技术(MBR)膜-生物反应器(MembraneBio-Reactor,MBR)为膜分离技术与生物处理技术有机结合之新型态废水处理系统。是一种由膜分离单元与生物处理单元相结台的新型水处理技术,以膜组件取代二沉池在生物反应器中保持高活性污泥浓度减少污水处理设施占地,并通过保持低污泥负荷减少污泥量。主要利用沉浸于好氧生物池内之膜分离设备截留槽内的活性污泥与大分子固体物。因此系统内活性污泥(MLSS)浓度可提升至10,000mg/L,污泥龄(SRT)可延长30天以上,于如此高浓度系统可降低生物反应池体积,而难降解的物质在处理池中亦可不断反应而降解。故在膜制造技术不断提升支援下,MBR处理技术将更加成熟并吸引着全世界环境保护工业的目光。
常见的高氨氮废水处理工艺的弱点:
 
1. 无论是“蒸氨(汽提)或吹脱+A/O或吹脱+化学沉淀”,都离不开高投资、高运行成本的预处理工艺。“蒸氨”一次性投资太大,“吹脱”动力消耗太大。
 
2. 续接A/O法时不仅投资高,而且占地面积大,对预处理出水的要求苛刻(如NH3-N必须小于300mg/l,汽提或吹脱法对超过5000mg/l以上的高浓度氨氮废水根本达不到这个要求,于是只能用成倍的清水稀释)。
 
3. 续接化学沉淀法虽然投资和占地面积都比A/O法小,但它药剂的消耗量太大,N:P:Mg之比都在1:1.1-1.2,处理药剂成本太高,而且出水也不可能达到国家一级或二级排放标准。
生化处理高浓度有机废水技术
1、EGSB厌氧技术
厌氧膨胀颗粒污泥床(简称EGSB)反应器的研究开始于20世纪90年代初。在利用UASB反应器处理生活污水时,为了增加污水与污泥的接触,更有效地利用反应器的容积,改变了UASB反应器的结构设计和操作参数,使反应器中颗粒污泥床在高的液体表面上升流速下充分膨胀,由此产生了早期的EGSB反应器。EGSB反应器实际上是改进的UASB反应器,区别在于前者具有更高的液体上升流速,使整个颗粒污泥床处于膨胀状态,这种独有的特征使其可以具有较大的高径比。EGSB反应器主要由主体部分、进水分配系统、气液固三相分离器和出水循环等部分组成,结构。其中,进水分配系统是将进水均匀分配到整个反应器的底部,产生一个均匀的上升流速:三相分离器是EGSB反应器最关键的构造,能将出水、沼气和污泥三相有效分离,使污泥在反应器内有效持留;出水循环部分是为了提高反应器内的液体表面上升流速,使颗粒污泥与污水充分接触,避免反应器内死角和短流的产生。  
废水厌氧生物处理是指在无分子氧的条件下通过厌氧微生物(包括兼氧微生物)的作用,将废水中各种复杂有机物分解转化成甲烷和二氧化碳等物质的过程。在厌氧生物处理的过程中,复杂的有机化合物被分解,转化为简单、稳定的化合物,同时释放能量。其中,大部分的能量以甲烷的形式出现,这是一种可燃气体,可回收利用。同时仅少量有机物被转化而合成为新的细胞组成部分,故相对好氧法来讲,厌氧法污泥增长率小得多。好氧法因为供氧限制一般只适用于中、低浓度有机废水的处理,而厌氧法及适用于高浓度有机废水,又适用于中、低浓度有机废水。同时厌氧法可降解某些好氧法难以降解的有机物,如固体有机物、着色剂蒽醌和某些偶氮染料等。
 
2、脉冲兼氧技术
在兼氧状态下,水解酸化池可将大分子物质转化为小分子物质,将环状结构转化为链状结构,进一步提高了废水的B/C比,增加了废水的可生化性,为后续的好氧生化处理创造条件。水解酸化池一般是针对污水浓度较高,或者难降解污染物较多才需要设置。
通过兼氧脉冲器实现水解酸化池进水均匀布水,并使水解酸化池污泥得到充分搅拌。无需曝气搅拌,也不消耗额外动力,在不增加水解酸化池溶解氧的前提下,实现对水解酸化池污泥的充分搅拌。即通过使用兼氧脉冲器有利于水解酸化池功能的充分实现。
高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。 水解酸化是取厌氧降解的前两阶段水解阶段、发酵(或酸化)阶段,提高废水可生化性,有利于后续好氧生化反应的充分进行。
水解阶段:水解可定义为复杂的非溶解性的聚合物被转化为简单的溶解性单体或二聚体的过程。高分子有机物因相对分子量巨大,不能透过细胞膜,因此不可能为细菌直接利用。它们在第一阶段被细菌胞外酶分解为小分子。
发酵(或酸化)阶段:发酵可定义为有机物化合物既作为电子受体也是电子供体的生物降解过程,在此过程中溶解性有机物被转化为以挥发性脂肪酸为主的末端产物,因此这一过程也称为酸化。
 
3、H池颗粒化污泥处理工艺
H/O 活性污泥处理工艺是A/O 活性污泥处理工艺的改进型,在原A/O处理工艺基础上增大回流比,增加活性污泥量,污泥泥龄相应增长,在适宜的条件下逐步形成好氧颗粒污泥。
该工艺广泛适用于制药、化工、印染等行业废水,尤其是对高氨氮、高磷废水有很好的脱氮除磷效果。多项工程的成功运行表明,该工艺较传统生化工艺对有机物降解更为彻底;氮磷去除效果好,出水氮磷指标很低;活性污泥颗粒化,污泥产量少等优点。
H/O 活性污泥工艺所用设备部件少,维修方便。主要设备为强混曝气器,曝气设备质量稳定可靠,我公司保证8年以上使用寿命。
 
4、CASS工艺
CASS工艺是将序批式活性污泥法(SBR)的反应池沿长度方向分为两部分,前部为生物选择区也称预反应区,后部为主反应区。在主反应区,后部安装了可升降的滗水装置,实现了连续进水间歇排水的周期循环运行,集曝气、沉淀、排水于一体。CASS工艺是一个好氧、缺氧、厌氧交替运行的过程,具有一定脱氮除磷效果。废水以推流方式运行,而各反应区则以完全混合的形式运行以实现同步硝化,反硝化和生物除磷。
 
5、A20工艺
A2O是Anaeroxic-Anoxic-Oxic的英文缩写,A2O生物脱氮除磷工艺是传统活性污泥工艺、生物硝化及反硝化工艺和生物除磷工艺的综合。
工作原理
生化处理池通过曝气装置、推进器(厌氧段和缺氧段)及回流渠道的布置分成厌氧段、缺氧段、好氧段。在该工艺流程内,BOD5、SS和以各种形式存在的氮和磷将一一被去除。
A2O生物脱氮除磷系统的活性污泥中,菌群主要由硝化菌和反硝化菌、聚磷菌组成。在好氧段,硝化细菌将入流中的氨氮及有机氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入到大气中,从而达到脱氮的目的。在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷除去。
工艺特点
(1)厌氧、缺氧、好氧三种不同的环境条件和种类微生物菌群的有机配合,能同时具有去除有机物、脱氮除磷的功能。
(2)在同时脱氧除磷去除有机物的工艺中,该工艺流程最为简单,总的水力停留时间也少于同类其他工艺。
(3)在厌氧—缺氧—好氧交替运行下,丝状菌不会大量繁殖,SVI一般小于100,不会发生污泥膨胀。
(4)污泥中磷含量高。
 
废水深度处理:膜技术和高级氧化的对决
当前国内焦化废水处理主要依照的标准是《污水综合排放标准》(GB8978-1996),COD一级标准是100mg/L,氨氮是25mg/L。随着国家水质标准的提高,主流工艺AO及其变形工艺对城市生活污水和工业废水进行的二级生化处理后,出水要达到回用标准可能还有一段距离,尤其是COD的去除率有待进一步提高,需要进行深度处理。在深度处理工艺中,高级氧化凭借其反应时间快、去除污染物彻底、处理后的废水可完全回收利用等优势,专家预计不久会用在各种废水深度处理中,尤其是高浓度工业废水领域。此外,膜处理技术也有其自身的优点,如高效的分离过程、低能耗等,而且随着膜技术日益成熟,相信也会用于废水的深度处理中。
当然,膜处理和高级氧化技术用于焦化废水深度处理也存在一些问题,主要有:
(1)如果采用膜处理技术进行深度处理,则存在二次水处理的过程,膜将二级出水进行分离后,水会形成两部分:一部分是处理后可直接回用的水,占总水量的75%;另一部分则是浓缩后的污水,COD和盐含量比较高,占总水量的25%,这部分水需要进行二次处理。专家建议,此部分污水可以采用活性炭吸附方法来去除COD,但是活性炭吸附存在活性炭再生等问题,有的学者提出可以将此部分废水回流进入二级处理中,这样就避免了后续的处理,但是对水质的影响需要进一步研究和论证。
(2)如果采用高级氧化法进行深度处理,会出现COD先下降后上升的现象,可能是因为高级氧化产生的中间产物构成了新的COD。专家提出采用重铬酸钾法测得的COD指标有一定的局限性,采用TOC指标可能会更合适。
专家提出将生化处理工艺中的A段与MBR结合使用,后续接上反渗透/纳滤等膜处理工艺对焦化废水进行处理也是一种不错的选择,由于MBR是封闭式的、占地小,厂区可以建设的比较漂亮,加上膜分离技术处理效果好,也是一种很有潜力的技术路线。
目前废水处理常着重于污染物降解,而忽视了废水中资源回收和再利用,不符合循环经济理念。专家建议开发全过程高效控制集成技术和零排放技术,加强某些高浓度废水中氨氮和酚等资源有效利用,对促进废水处理技术升级具有重要意义。